Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38417017

RESUMEN

Background: Carbohydrate counting (CC) and meal announcements, before eating, introduce a significant burden for individuals managing type 1 diabetes (T1D). An automated insulin delivery system with automatic bolusing that eliminates the need for CC and premeal bolusing (i.e., a hands-free closed-loop [HFCL] system) was assessed in a feasibility trial of adults with T1D. Methods: The system included the MiniMed™ 780G pump and a smartphone-paired smartwatch with the Klue application (Klue, Inc.) that detects eating and drinking gestures. A smartphone algorithm converted gestures into carb amounts that were transmitted to the pump for automatic bolusing. For 5 days, participants (N = 17, 18-75 years of age) used the system at home with meal announcements based on traditional CC, with the Klue application disabled (Home-stay phase). Thereafter, participants moved to a supervised hotel setting, where the Klue application was enabled for 5 days and meals were not announced (Hotel-stay phase). Participants consumed the same eight test meals (six solid and two liquid) of varying caloric and carb size at the same time and day of the week for both phases, and glycemic metrics were compared. Otherwise, there were no other meal restrictions. Results: The overall time in range (70-180 mg/dL) was 83.4% ± 7.0% and 80.6% ± 6.7% for the Home-stay and Hotel-stay, respectively (P = 0.08). The average time at <70 mg/dL was 3.1% and 3.0% (P = 0.9144), respectively, and the average time at >180 mg/dL was 13.5% and 16.3% (P = 0.1046), respectively. Postprandial glycemia following low-carb test meals was similar between the two phases. The system's ability to accommodate high-carb meals was somewhat limited. There were no episodes of severe hypoglycemia or diabetic ketoacidosis. Conclusion: Preliminary findings show that a HFCL system was safe and maintained overall glycemic control, similar to that observed with traditional CC and manual meal bolusing. By eliminating these daily T1D burdens, a HFCL system may improve quality of life for individuals with T1D. ClinicalTrials.gov number: NCT04964128.

2.
Pediatr Qual Saf ; 6(5): e472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589646

RESUMEN

Multiple clinic models for Down syndrome exist; one model is the multidisciplinary, specialty clinic, such as the Massachusetts General Hospital Down Syndrome Program (MGH DSP). METHODS: Intrateam communication was identified as an area for improvement. Our team developed an intervention, the Passport, a paper-based communication tool passed by parents between clinical teams who evaluated the same patients in different locations. Metrics included an electronic survey of parents and clinicians and tracking the frequency of Passport use. The analysis included the use of Statistical Process Control charts and rules. RESULTS: The parental suggestions for communication-based interactions improved from 54% (32/60) to 17% (3/18) (P < 0.01). Communication scores within the MGH DSP team and between the team and parents were high at 86% and 96%, respectively. Overall satisfaction with the MGH DSP remained consistently high during our project, with a mean score of 6.49 out of 7. The MGH DSP team members reported communication scores with a mean of 85 out of 100. CONCLUSIONS: Implementation of a paper Passport tool incorporated parents in the real-time, intraclinic communication between our MGH DSP teams, leading to improved communication suggestions and high marks on the other metrics followed. Such a tool could be useful for other multidisciplinary clinics where team members evaluate the same patients at different locations on the same day.

4.
Diabetes Technol Ther ; 20(3): 207-221, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29565722

RESUMEN

BACKGROUND: Simulations using mathematical models are important for studying, developing, and improving therapies for people with type 1 diabetes. METHODS: The Medtronic CareLink® database was used to create virtual patients with a variety of inter-insulin sensitivities, meal absorption rates, pharmacokinetics, age, and gender. In addition, intra-insulin sensitivities of the virtual patients change over a 24-h cycle. RESULTS: A total of 2087 virtual patients were developed. The time percentage between 70 and 180 mg/dL of the CareLink uploads and the simulated virtual patients was 72.4% (18.6) and 74.1% (16.9), respectively. The time percentage <70 mg/dL of the real continuous glucose monitoring from CareLink uploads and the simulated virtual patients was 1% (2.4) and 1.7% (4.1), respectively. A simulation study with the virtual patients predicted the glycemic distribution after 2 h of insulin suspension as reported in the ASPIRE (Automation to Simulate Pancreatic Insulin Response) clinical trial. The 3 months outcomes of Medtronic's hybrid closed-loop 670G system pivotal trial were also predicted in a simulation study. The time percentage <70 mg/dL was 3.4% and 3.1%, and the time percentage between 71 and 180 mg/dL was 73.8% and 77.7% for 93 pivotal study adults (>18 years) and 90 adult (>28 years) virtual patients, respectively. CONCLUSION: The Medtronic CareLink database was utilized to generate a large number of virtual patients with a variety of insulin sensitivities, pharmacokinetics, and meal absorption rates. This new simulation model can be potentially used to evaluate and prognosticate the outcomes of studies of artificial pancreas algorithms and systems.


Asunto(s)
Glucemia/análisis , Simulación por Computador , Diabetes Mellitus Tipo 1/sangre , Resistencia a la Insulina/fisiología , Modelos Teóricos , Páncreas Artificial , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina
5.
Hum Mol Genet ; 27(5): 811-822, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301038

RESUMEN

Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid ß-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/ß catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3ß inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/ß catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.


Asunto(s)
Enfermedad de Gaucher/patología , Células Madre Pluripotentes Inducidas/patología , Lisosomas/patología , Osteoblastos/patología , Matriz Ósea/patología , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Exocitosis/genética , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Lisosomas/genética , Mutación , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Vía de Señalización Wnt , beta Catenina/metabolismo
6.
Breastfeed Med ; 12: 72-76, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28135112

RESUMEN

A central goal of The Academy of Breastfeeding Medicine is the development of clinical protocols for managing common medical problems that may impact breastfeeding success. These protocols serve only as guidelines for the care of breastfeeding mothers and infants and do not delineate an exclusive course of treatment or serve as standards of medical care. Variations in treatment may be appropriate according to the needs of an individual patient.


Asunto(s)
Lactancia Materna/métodos , Fórmulas Infantiles/química , Leche Humana/química , Madres , Adulto , Lactancia Materna/efectos adversos , Preescolar , Protocolos Clínicos , Diabetes Mellitus Tipo 1/fisiopatología , Carbohidratos de la Dieta , Humanos , Lactante , Fórmulas Infantiles/efectos adversos , Recién Nacido
7.
Hum Mol Genet ; 24(20): 5775-88, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220978

RESUMEN

Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (Type 2) or slow progression (Type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms involved are largely unknown. To identify the lysosomal alterations in GD neurons and uncover the mechanisms involved, we used induced pluripotent stem cells (iPSCs) derived from patients with GD. In GD iPSC-derived neuronal cells (iPSC-NCs), GBA1 mutations caused widespread lysosomal depletion, and a block in autophagic flux due to defective lysosomal clearance of autophagosomes. Autophagy induction by rapamycin treatment in GD iPSC-NCs led to cell death. Further analysis showed that in GD iPSC-NCs, expression of the transcription factor EB (TFEB), the master regulator of lysosomal genes, and lysosomal gene expression, were significantly downregulated. There was also reduced stability of the TFEB protein and altered lysosomal protein biosynthesis. Treatment of mutant iPSC-NCs with recombinant GCase (rGCase) reverted the lysosomal depletion and autophagy block. The effect of rGCase on restoring lysosomal numbers in mutant cells was enhanced in the presence of overexpressed TFEB, but TFEB overexpression alone did not reverse the lysosomal depletion phenotype. Our results suggest that GBA1 mutations interfere with TFEB-mediated lysosomal biogenesis, and that the action of GCase in maintaining a functioning pool of lysosomes is exerted in part through TFEB. The lysosomal alterations described here are likely to be a major determinant in GBA1-associated neurodegeneration.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad de Gaucher/fisiopatología , Glucosilceramidasa/genética , Lisosomas/fisiología , Neuronas/fisiología , Biogénesis de Organelos , Diferenciación Celular , Enfermedad de Gaucher/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Lisosomas/metabolismo , Mutación , Neuronas/metabolismo
8.
Stem Cells Transl Med ; 4(8): 878-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26062980

RESUMEN

Gaucher disease (GD) is the most common lysosomal storage disease resulting from mutations in the lysosomal enzyme glucocerebrosidase (GCase). The hematopoietic abnormalities in GD include the presence of characteristic Gaucher macrophages that infiltrate patient tissues and cytopenias. At present, it is not clear whether these cytopenias are secondary to the pathological activity of Gaucher cells or a direct effect of GCase deficiency on hematopoietic development. To address this question, we differentiated induced pluripotent stem cells (iPSCs) derived from patients with types 1, 2, and 3 GD to CD34(+)/CD45(+)/CD43(+)/CD143(+) hematopoietic progenitor cells (HPCs) and examined their developmental potential. The formation of GD-HPCs was unaffected. However, these progenitors demonstrated a skewed lineage commitment, with increased myeloid differentiation and decreased erythroid differentiation and maturation. Interestingly, myeloid colony-formation assays revealed that GD-HPCs, but not control-HPCs, gave rise to adherent, macrophage-like cells, another indication of abnormal myelopoiesis. The extent of these hematologic abnormalities correlated with the severity of the GCase mutations. All the phenotypic abnormalities of GD-HPCs observed were reversed by incubation with recombinant GCase, indicating that these developmental defects were caused by the mutated GCase. Our results show that GCase deficiency directly impairs hematopoietic development. Additionally, our results suggest that aberrant myelopoiesis might contribute to the pathological properties of Gaucher macrophages, which are central to GD manifestations. The hematopoietic developmental defects we observed reflect hematologic abnormalities in patients with GD, demonstrating the utility of GD-iPSCs for modeling this disease.


Asunto(s)
Enfermedad de Gaucher/terapia , Hematopoyesis , Células Madre Pluripotentes Inducidas/trasplante , Mielopoyesis/fisiología , Diferenciación Celular , Linaje de la Célula , Enfermedad de Gaucher/patología , Células Madre Hematopoyéticas/patología , Humanos , Macrófagos/patología
9.
Stem Cells ; 32(9): 2338-49, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24801745

RESUMEN

Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid ß-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1ß than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery.


Asunto(s)
Citocinas/biosíntesis , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Femenino , Enfermedad de Gaucher/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
10.
Circulation ; 129(3): 359-72, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24163065

RESUMEN

BACKGROUND: The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. METHODS AND RESULTS: VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. CONCLUSIONS: VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.


Asunto(s)
Células Madre Embrionarias/citología , Sangre Fetal/citología , Células Madre Pluripotentes/citología , Daño por Reperfusión/terapia , Enfermedades de la Retina/terapia , Trasplante de Células Madre/métodos , Animales , Capilares/citología , Senescencia Celular , Daño del ADN , Modelos Animales de Enfermedad , Fibroblastos/citología , Supervivencia de Injerto , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regeneración , Daño por Reperfusión/patología , Enfermedades de la Retina/patología , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 109(44): 18054-9, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071332

RESUMEN

Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid ß-glucocerebrosidase gene. To model GD, we generated human induced pluripotent stem cells (hiPSC), by reprogramming skin fibroblasts from patients with type 1 (N370S/N370S), type 2 (L444P/RecNciI), and type 3 (L444P/L444P) GD. Pluripotency was demonstrated by the ability of GD hiPSC to differentiate to all three germ layers and to form teratomas in vivo. GD hiPSC differentiated efficiently to the cell types most affected in GD, i.e., macrophages and neuronal cells. GD hiPSC-macrophages expressed macrophage-specific markers, were phagocytic, and were capable of releasing inflammatory mediators in response to LPS. Moreover, GD hiPSC-macrophages recapitulated the phenotypic hallmarks of the disease. They exhibited low glucocerebrosidase (GC) enzymatic activity and accumulated sphingolipids, and their lysosomal functions were severely compromised. GD hiPSC-macrophages had a defect in their ability to clear phagocytosed RBC, a phenotype of tissue-infiltrating GD macrophages. The kinetics of RBC clearance by types 1, 2, and 3 GD hiPSC-macrophages correlated with the severity of the mutations. Incubation with recombinant GC completely reversed the delay in RBC clearance from all three types of GD hiPSC-macrophages, indicating that their functional defects were indeed caused by GC deficiency. However, treatment of induced macrophages with the chaperone isofagomine restored phagocytosed RBC clearance only partially, regardless of genotype. These findings are consistent with the known clinical efficacies of recombinant GC and isofagomine. We conclude that cell types derived from GD hiPSC can effectively recapitulate pathologic hallmarks of the disease.


Asunto(s)
Enfermedad de Gaucher/patología , Células Madre Pluripotentes/citología , Diferenciación Celular , Linaje de la Célula , Humanos , Activación de Macrófagos , Modelos Biológicos
12.
Tissue Eng Part A ; 17(7-8): 1111-22, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21142626

RESUMEN

Hydrogel-based scaffolds such as alginate have been extensively investigated for cartilage tissue engineering, largely due to their biocompatibility, ambient gelling conditions, and the ability to support chondrocyte phenotype. While it is well established that the viscoelastic response of articular cartilage is essential for articulation and load bearing, the time-dependent mechanical properties of hydrogel-based cartilage scaffolds have not been extensively studied. Therefore, the objective of this study was to characterize the intrinsic viscoelastic shear properties of chondrocyte-laden alginate scaffolds and determine the effects of seeding density and culturing time on these properties. Specifically, the viscoelastic properties (equilibrium and dynamic shear moduli and dynamic phase shift angle) of these engineered cartilage grafts were measured under torsional shear. In addition, the rapid ramp-step shear stress relaxation of the alginate-based cartilage scaffolds was modeled using the quasi-linear viscoelastic (QLV) theory. It was found that scaffold stiffness increased with both culturing time and cell density, whereas viscosity did not change significantly with cell density (30 vs. 60 million/mL). Similar to native cartilage, the energy dissipation of engineered scaffolds under pure shear is highly correlated to the glycosaminoglycan content. In contrast, collagen content was not strongly correlated to scaffold shear modulus, especially the instantaneous shear modulus predicted by the quasi-linear viscoelastic model. The findings of this study provide new insights into the structure-function relationship of engineered cartilage and design of functional grafts for cartilage repair.


Asunto(s)
Cartílago , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Fuerza Compresiva , Elasticidad , Hidrogel de Polietilenoglicol-Dimetacrilato , Estrés Mecánico , Viscosidad , Soporte de Peso
13.
Proc Natl Acad Sci U S A ; 106(44): 18479-84, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19833870

RESUMEN

Eukaryotic initiator proteins form origin recognition complexes (ORCs) that bind to replication origins during most of the cell cycle and direct assembly of prereplication complexes (pre-RCs) before the onset of S phase. In the eubacterium Escherichia coli, there is a temporally similar nucleoprotein complex comprising the initiator protein DnaA bound to three high-affinity recognition sites in the unique origin of replication, oriC. At the time of initiation, this high-affinity DnaA-oriC complex (the bacterial ORC) accumulates additional DnaA that interacts with lower-affinity sites in oriC, forming a pre-RC. In this paper, we investigate the functional role of the bacterial ORC and examine whether it mediates low-affinity DnaA-oriC interactions during pre-RC assembly. We report that E. coli ORC is essential for DnaA occupation of low-affinity sites. The assistance given by ORC is directed primarily to proximal weak sites and requires oligomerization-proficient DnaA. We propose that in bacteria, DnaA oligomers of limited length and stability emerge from single high-affinity sites and extend toward weak sites to facilitate their loading as a key stage of prokaryotic pre-RC assembly.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Origen de Réplica/genética
14.
Pain Med ; 10(6): 1012-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19594841

RESUMEN

OBJECTIVE: To investigate the efficacy and tolerability of Botulinum neurotoxin-A (BoNT-A) in the patients with refractory neck pain. BACKGROUND: An analgesic effect is suggested for BoNT-A by a number of animal studies. Two blinded studies suggested efficacy of BoNT-A in a chronic neck pain. METHODS: Forty-seven subjects were enrolled in a prospective, double-blind, placebo-controlled study. A total of 150 to 300 units of BoNT-A were injected into the neck and shoulder muscles based on pain localization. Subjects completed the visual analog scale (VAS), Pain Frequency Questionnaire and the Modified Oswestry Pain Questionnaire (MOPQ) at baseline, 3 and 8 weeks after the treatment. The primary outcomes consisted of: 1) > or =50% improvement on the VAS; and 2) > or =30% reduction in pain day frequency. The secondary outcome was an improvement of ADL in MOPQ. Excellent responders (ERs) were those who met all three outcomes. RESULTS: At 2 months, a significant reduction in the mean VAS (pain intensity) was noted in the BoNT-A group compared with the placebo (P = 0.0018, CI 95% from 2.51 to 7.89). At 2 months, there were six ERs in the BoNT-A group and one ER in the placebo group (P = 0.0152). CONCLUSION: Administration of BoNT-A into the neck and shoulder muscles for treatment of chronic refractory neck pain met one of the two primary outcomes: reduction in pain intensity. More ERs were noted in the Botox group.


Asunto(s)
Toxinas Botulínicas Tipo A/uso terapéutico , Dolor de Cuello/tratamiento farmacológico , Fármacos Neuromusculares/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Método Doble Ciego , Resistencia a Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Estudios Prospectivos , Resultado del Tratamiento
15.
Nature ; 457(7225): 97-101, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19052548

RESUMEN

Haematopoietic stem cell (HSC) niches, although proposed decades ago, have only recently been identified as separate osteoblastic and vascular microenvironments. Their interrelationships and interactions with HSCs in vivo remain largely unknown. Here we report the use of a newly developed ex vivo real-time imaging technology and immunoassaying to trace the homing of purified green-fluorescent-protein-expressing (GFP(+)) HSCs. We found that transplanted HSCs tended to home to the endosteum (an inner bone surface) in irradiated mice, but were randomly distributed and unstable in non-irradiated mice. Moreover, GFP(+) HSCs were more frequently detected in the trabecular bone area compared with compact bone area, and this was validated by live imaging bioluminescence driven by the stem-cell-leukaemia (Scl) promoter-enhancer. HSCs home to bone marrow through the vascular system. We found that the endosteum is well vascularized and that vasculature is frequently localized near N-cadherin(+) pre-osteoblastic cells, a known niche component. By monitoring individual HSC behaviour using real-time imaging, we found that a portion of the homed HSCs underwent active division in the irradiated mice, coinciding with their expansion as measured by flow assay. Thus, in contrast to central marrow, the endosteum formed a special zone, which normally maintains HSCs but promotes their expansion in response to bone marrow damage.


Asunto(s)
Movimiento Celular , Células Madre Hematopoyéticas/citología , Inmunoensayo/métodos , Nicho de Células Madre/citología , Animales , Vasos Sanguíneos/citología , Médula Ósea/patología , Cadherinas/análisis , División Celular , Separación Celular , Fémur/citología , Inmunohistoquímica , Ratones , Modelos Animales , Osteoblastos/citología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Tibia/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...